Regenerable Trace-Contaminant Sorbent for the Primary Life Support System (PLSS), Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal addresses the development of a regenerable air-revitalization system for trace-contaminant (TC) removal for the space suit used in Extravehicular Activities (EVAs). The proposed innovations are: (1) a carbon monolith sorbent, in contrast to the currently used bed of granular charcoal; (2) carbon pore structure tailored for optimal vacuum/thermal regeneration; (3) resistive heating of the carbon monolith for rapid regeneration; (4) low pressure drop; and (5) good resistance to dusty environments. The overall objective is to develop a trace-contaminant control system that is regenerable and that possesses substantial weight, size, and power-requirement advantages with respect to the current state of the art. The Phase 1 objectives are: (1) to demonstrate the technical feasibility of using a novel monolithic carbon sorbent for trace-contaminant control; and (2) to demonstrate effective ammonia capture and sorbent regeneration. This will be accomplished in three tasks: (1) Preparation and Characterization of Carbon-Sorbent Monoliths; (2) Sorbent Testing; and (3) Product Assessment.

Primary U.S. Work Locations and Key Partners

Regenerable Trace-Contaminant Sorbent for the Primary Life Support System (PLSS), Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Regenerable Trace-Contaminant Sorbent for the Primary Life Support System (PLSS), Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Advanced Fuel	Lead	Industry	East Hartford,
Research, Inc.	Organization		Connecticut
• Kennedy Space	Supporting	NASA	Kennedy Space
Center(KSC)	Organization	Center	Center, Florida

Primary U.S. Work Locations	
Connecticut	Florida

Project Transitions

0

February 2011: Project Start

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138456)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Advanced Fuel Research, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Marek Wojtowicz

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Regenerable Trace-Contaminant Sorbent for the Primary Life Support System (PLSS), Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.2 Extravehicular Activity Systems
 - ☐ TX06.2.2 Portable Life Support System

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

